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2. Preliminary Matters 

 

2a. Abstract 

 While evaporation currently accounts for approximately 15% of reservoir storage 

annually, climate change-induced temperature increases could exacerbate losses, a crucial 

consideration for hydropower generation, fisheries, irrigation, and lake ecosystems. This study 

assesses the impacts of climate change on evaporation over Lake Winnipeg, a vital lake for 

Manitoba, Canada, to inform future water resource management. However, inadequate weather 

data hinders the accurate evaporation estimation using current empirical equations, especially 

when analyzing the impacts of climate change based on limited climate model outputs. To 

address this gap, this study employs deep neural networks (DNNs), multilayer networks of 

artificial neurons capable of non-linear regression, as a solution to modelling evaporation with 

fewer variables while retaining sufficient accuracy. Using past climate data, six DNN models 

were trained on different input variables, with the most accurate model achieving an R2 of 

0.9970. Applying this model to simulated data from the CanLEADv1 climate ensemble dataset 

displayed that evaporation over Lake Winnipeg’s southern basin would increase by roughly 30% 

by the end of the century, with significant increases noted during most months as soon as 

2041-2060. 
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2c. Key Words 

evaporation · deep neural networks · Penman evaporation equation · Lake Winnipeg · 

TensorFlow · global warming · global climate change · representative concentration pathway · 

hydroelectricity · hydroelectric generation potential · dam reservoirs · large open reservoirs · 
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2d. Abbreviations and Acronyms 

DNN (Deep neural networks) · LNRB (Lower Nelson River Basin) · RCP (Representative 

concentration pathway) · R2 (Coefficient of determination) · mm/d (Millimeters per day) · IPCC 

(International Panel on Climate Change) · Tavg (Average daily temperature) · Tmin (Minimum 

daily temperature) · Tmax · RH (Relative humidity) · u2 (2-meter windspeed) · Ra (Total incoming 

daily extraterrestrial radiation) · Rs (Measured net incoming shortwave/solar radiation) 
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3. Introduction 

Evaporation is a central component of water and energy exchange, driven by 

electromagnetic radiation, temperature gradient heat flows, and phase change heat flows [3]. 

Interactions between particles at the surface of a water body and the overlying dry air are 

influenced by these elements, which control the rate of evaporation [3]. Hydroelectric generation 

potential, the energy that can be generated in a dam’s hydroelectric system, is dependent on the 

volume of water flow and the elevation change of water [3]. The greater the water flow and 

elevation change, the more electricity a hydropower plant can produce [5].  This means 

evaporation from open storage systems can diminish hydropower potential by restricting water 

volume and head difference [12]. While many studies have examined the impacts of changes in 

reservoir inflow brought on by climate change, few have examined the impacts brought about by 

climate change-induced evaporative fluxes [1]. From 1984 to 2016, temperatures in Canada have 

rapidly increased by 1.7 °C nationwide and 1.9 °C across the Prairies [2]. This is significant 

given the relationship between evaporation and temperature and the province of Manitoba’s 

reliance on hydropower [5]. Under the high emission representative concentration pathway (RCP 

8.5), from the IPCC’s fifth climate report, the Canadian Prairies could experience an increase in 

annual mean temperature between 2.3 and 6.5 °C [2]. Further, strong scientific consensus 

suggests the warming rate in Canada is approximately twice the global mean [14]. A study 
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examining climate change’s impacts on water supply and hydropower generation indicated rising 

temperatures are expected to alter precipitation type and quantity, and affect its spatial and 

temporal distribution in future periods [5].  Given that evaporation and precipitation significantly 

affect reservoir levels, projected temperature rises must be carefully assessed in water-dependent 

regions [14]. Manitoba generates around 97% of its electricity via hydroelectric dams, and close 

to 70% of the province’s hydropower generation capacity resides within the Lower Nelson River 

Basin (LNRB) [5]. Lake Winnipeg is one of the major lake water storage areas that impact 

LNRB operations, as the Nelson River starts off the lake [5]. Its release at the Jenpeg Station 

contributes roughly 67% of the annual flows for the cumulative Hudson Bay outlet [5]. 

Furthermore, increased evaporation rates could reduce available drinking water in communities 

that rely on surface water sources, diminishing freshwater supply for northern Canadian 

communities [9]. Environmental changes have altered the fragile thermodynamic relationships of 

northern ecosystems by shifting seasonal transitions, altering precipitation regimes, reducing 

snow and ice cover, and increasing exposure to solar radiation [9]. For these reasons, 

understanding the possible increases in evaporation brought on by temperature increases is a 

vital consideration for the management of Lake Winnipeg’s water resources for the province of 

Manitoba. 

Although an estimated 15% of the total water storage capacity is lost annually via 

evaporation, evaporation remains difficult to accurately quantify [4]. Several empirical methods 

for quantifying evaporation exist, relying on different theoretical foundations and input data, 

including mass balance, energy balance, and combined methods [3]. One study derived three 

simplified versions of the Penman evaporation equation, only requiring the use of routine 

weather data collected by most weather stations which all performed fairly well against the FAO 

CLIMWAT global climate dataset [14]. However, many climate models still do not output 

enough climate variables to use even these simplified methods for evaporation estimation. For 

this reason, this study turns to Deep Neural Networks (DNN), multilayer networks of artificial 

neurons, which are capable of modelling complex non-linear phenomena [6] as a possible 

solution to the issue of data availability. Because of the flexibility of DNN architecture, they 

have the ability to map complex processes to a high degree of accuracy, even when missing key 

variables [7]. DNNs learn by taking input variables, referred to as features, and passing them 

through layers of interconnected neurons [6]. Each neuron multiplies its inputs by assigned 
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weights, sums the results, and passes the total through an activation function to produce its 

output. [6]. As the initial model weights are randomized, DNNs use a process called 

‘backpropagation’ to readjust the weights across the gradient to minimize prediction error 

between its estimated and measured outputs (labels), using an evaluation metric such as 

mean-squared error [6]. Across many interactions of this process of predicting and adjusting the 

connection weights, referred to as epochs, a DNN can learn how to map complex non-linear 

processes [6].  

 

4. Purpose 

Given the established knowledge gap in understanding the extent of evaporation from 

large lakes [14], the potential effects of climate change in the Canadian Prairies [2], and Lake 

Winnipeg’s importance to Manitoba’s electricity production and economy [5], this study seeks to 

examine how climate change will impact Lake Winnipeg’s evaporation. This was done by 

comparing evaporation over a historical period from 2010-2020 with evaporation from 

2041-2100, split into three 20-year epochs to assess the extent of evaporation over time and 

determine when changes become significant. Comparisons were made on both a per-month and 

annual basis to better inform the planning of water resources. Moreover, given the additional 

limitations imposed by the lack of adequate weather data for modeling purposes, this study will 

be assessing the effectiveness of DNN-based models in evaporative loss prediction. This is done 

by training six DNN models on historical evaporation estimates using the Penman equation, 

selectively reducing input features and neurons to create models that omit certain inputs while 

retaining sufficient accuracy for planning needs. 

 

5. Hypotheses 

 Mean monthly evaporation rates over Lake Winnipeg are expected to rise compared to 

historical averages, driven by global warming and the temperature-evaporation relationship, 

where higher temperatures intensify particle interactions and enhance evaporation. Due to their 

capacity to capture complex non-linear relationships, DNNs are well-suited for modeling 

evaporation and can yield results closely aligned with those produced by the Penman equation. 

Further, DNNs should be able to retain effectiveness even when fewer weather parameters are 
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fed as input features, because of their flexible network structure and ability to effectively model 

complex phenomena even with limited inputs. 

 

6. Materials and Methods 

 All data preparation, model training, and analysis were conducted on a Lenovo LOQ 

laptop. Past climatic data was taken from Visual Crossing, an online database of worldwide 

archived weather-station data. Specifically, for the southern basin of Lake Winnipeg, historic 

data for 2010-2020 was interpolated from nearby weather stations at the municipalities of Gimli 

and Victoria Beach for the point 50.75°N 96.75°W. Predicted weather data for 2041-2100 was 

taken from the CanLEADv1 Climate Ensemble, a grouping of several climate change scenarios 

under RCP 8.5, published by the Canadian Federal Government. The simulation used in this 

study was from the ‘CanESM2_ALL-EWEMBI-MBCn/’, specifically titled ‘r1_rlilpl,’ which 

accounted for all climate forcing, anthropogenic and natural, for North America from 1950-2100. 

This simulation used a single grid cell at 50.75°N, 96.75°W to compare evaporation estimates 

based on historical weather data with projections from DNN models for 2041-2100. The future 

period was divided into three 20-year intervals to track changes over time, using monthly mean 

evaporation rates (mm/d) as the primary metric. 

Python codes were written to perform the calculation of evaporation via the Penman 

equation [5] for the historical period. Using this data and the TensorFlow 2.0 library, a Python 

script was written to generate the DNN models. The first model was trained on 7 input features, 

using the ReLU activation function and Adam optimizer in 500 epochs, running through 4018 

daily records, and it had 2 hidden layers of neurons (14 x 7). Subsequent models featured fewer 

inputs and neurons, with the first hidden layer containing twice as many neurons as inputs, and 

the second hidden layer matching the number of input features. 

 

6a. Historical Evaporation Period 

 Initially, historical climate measurements were taken directly from Visual Crossing, 

interpolated for the point 50.75°N 96.75°W based on weather stations at Gimli and Victoria 

Beach. These measurements included seven key climatic variables, relevant for the Penman 

equation: mean, minimum, and maximum temperatures (T, Tmin, & Tmax), relative humidity (RH), 

windspeed at a 2m height (u2), incoming extraterrestrial radiation (Ra), and measured net 
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incoming solar radiation (Rs). A Python script was used to automate the process of reading 

measured weather data and applying it through the Penman equation (see Annex 1). Using daily 

records from 1 Jan. 2010 to 31 Dec. 2020, daily evaporation rates were estimated from 

2010-2020 in terms of mm/day and summarized into monthly mean evaporation rates for this 

historical period. The mean annual evaporation was also estimated using the daily records for the 

entire period to serve as another metric for comparison. 

     The Penman equation required modifications since it was originally formulated for 

above-zero temperatures, to account for the sub-zero conditions typical of Manitoba’s fall and 

winter months. Although reservoir losses due to sublimation are generally lower than those from 

evaporation, the prolonged sub-zero temperatures could make sublimation from the frozen lake 

surface more significant. To capture these effects, adjustments were made to the calculations for 

vapor pressure [8], the vapor pressure deficit [8], the slope of the saturation vapor pressure curve 

[10], and the latent heats of vaporization and sublimation [10]. 

 

6b. DNN Model Generation 

 The six DNN models used in this study were trained as follows. The data used for 

training the model came from the historical evaporation estimates generated with the Penman 

equation, with daily measured weather variables serving as input features and the estimated daily 

evaporation values acting as target or label data. Each of the models utilized 80% of the 4018 

daily records for training, whereas the remaining 20% was used for model evaluation and testing. 

The activation function chosen was ReLU, or Rectified Linear Unit, for its simplicity and its 

ability to avoid vanishing gradients for model weights. Adam, or adaptive moment estimation, 

was chosen as the model optimizer for every model. A model optimizer is an algorithm that is 

used to adjust the weights and biases of the neural network to minimize the loss function, which 

in this project was Mean Squared Error (MSE). The initial learning rate, or the amount to which 

connection weights can be adjusted, was chosen to be 0.001 to avoid overfitting, Adam optimizer 

dynamically adjusts the learning rate to allow for faster and accurate learning. Each model was 

trained for 500 training cycles or epochs. R2 was used to assess the models’ predictive power at 

the end of training and during testing (significant deterioration of R2 between training and testing 

would signal overfitting). While each model was trained in the same way, each had a different 

number of inputs and a different network structure. The first model trained, M0, had seven input 
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variables, the same as the Penman method, and two hidden layers. The first layer contained 14 

neurons – double the number of input variables, and the second layer had 7 neurons, matching 

the number of input variables. This convention is a widely used rule of thumb for DNNs, the 

same convention was used for all other models as it helped to diminish the risk of overfitting 

while maintaining strong predictive power. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 displays the DNN model structure for M0 with 7 features (input nodes). 

 

6c. Future Evaporation 

While future climate data was initially taken directly from the CanLEADv1 Climate 

Ensemble dataset, further augmentation and bias correction were required before it was used as 

input for the trained DNN models. Raw data was available in netCDF file format and Python 

script was written to automate the extraction and conversion of data from netCDF to CSV 

format. Further, the CanLEADv1 generated wind speed data exhibited a clear bias, significantly 

underestimating ‘u2’ (wind speed at 2m) and lowering its variance, apparent when compared 

with measured wind speed data. For this reason, bias adjustment was done by shifting the mean 

of the windspeed data toward the historical average, while also correcting for the variance. (No 

corrections were required for temperature, relative humidity, and radiation data from 

CanLEADv1). 
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The first DNN model, M0, was fed all seven input variables on a daily basis from 

2041-2100 to generate model-predicted daily evaporation data. As was done with historic 

evaporation estimates, these daily model-predicted values were summarized into monthly mean 

evaporation rates and mean annual evaporations. As mentioned earlier, the future period was 

broken down into three smaller segments (2041-2060, 2061-2080, and 2081-2100) to allow for 

the successive charting of changes in evaporation over time. 

 

7. Results and Observations 

7a. Past Evaporation 

 

 

 

 

 

 

 

 

 

Fig 2 displays the average evaporation that occurs during each month of the year in mm over the 

surface of the lake for the historical baseline period (2010-2020). 

 

 

 

 

 

 

 

 

 

Fig 3 displays the average cumulative annual evaporation in the historical period, totalling 

1187.3 mm over the southern basin of Lake Winnipeg. 
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These baseline results show that monthly evaporative losses range between 8-225 mm in 

a given month, with a maximum occurring in July. In addition, the cumulative losses come up to 

1187.3 mm on an annual basis. With the corrections made for sub-zero conditions and 

sublimation, we can see that winter months do contribute some amount to the annual losses, with 

around 54mm of the surface being lost from November to January. 

 

7b. Model Performance Summary 

 

 

 

 

 

 

 

 

 

Fig 4 summarizes the performance of the DNN models generated with different numbers of input 

variables. The only exception to the trend of removing variables is M3, where Rs was replaced 

with RS_HS, an estimate using the Hargreaves-Samani Equation [11]. Note that Ra was always 

calculated directly based on the day of the year (Julian day). 

 The most accurate models were, as expected, M0 and M1, which were fed all the same 

measured variables that the Penman method required, but did not require the various calibrated 

coefficients described in Annex 1. For M0, an R2 of 0.9970 means the model was capable of 

explaining 99.70% of the total variance of Penman evaporation estimation, essentially 

indistinguishable from the empirical methods' accuracy. It appears that Tavg has very little 

predictive power, due to the negligible decrease of R2 between M0 and M1 (0.9970 vs 0.9963). 

M3 strikes the best balance between accuracy and data requirements. Two of the input variables 

contained in M3 are estimated (Ra and RS_HS), which means that with just three input variables, 

an R2 of 0.9449 was achieved via a DNN. 
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7c. Future Evaporation 

 

 

 

 

 

 

 

 

 

 

 

Fig 5 shows a direct comparison of the mean monthly evaporation rate (in mm/day) between 

historical evaporation ‘E_hist’ and each segment of the 2041-2100 future period. ‘E_4160’ 

encodes evaporation from 2041-2060, and subsequent periods are described in the same format. 

For each subsequent period, it is evident that the monthly means are gradually increasing and the 

trend is clearly noticeable for the months of March to September.  

 

 

 

 

 

 

 

 

 

 

Fig 6 shows a direct comparison of the cumulative annual average evaporation in different 

periods. The cumulative values illustrate the projected rise in mean annual evaporation (mm) 

across various time periods. 
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Fig 7 shows the percent increase in both monthly evaporation rate and cumulative annual 

evaporation. 

         As shown in Figs. 4 and 5, evaporation over the surface of the southern basin of Lake 

Winnipeg will increase in the future, driven by the temperature increase brought on by climate 

change. The greatest increases in evaporative loss occur in spring and summer months, from 

April to July, with monthly mean evaporation rate increases ranging between 12% and 82% by 

the end of the century. Winter months experienced a high percentage increase due to negligible 

historical evaporation compared to minor future evaporation. (0.5mm vs 1.3mm). Comparing the 

cumulative annual evaporative loss, an increase of 29% was found when comparing 2081-2100 

against 2010-2020.  

 

7d. Statistical Analysis 

 Given the increases in monthly evaporation rates in all months under the predicted 

changes in climate variables, verification of the statistical significance of these changes was 

required to draw conclusions. A t-test for comparing means was desired, but since the sample 

sizes were small, with 11 different monthly mean evaporation rates for 2010-2020 and 20 for 

each of the future periods, normality tests were conducted before choosing a method for 

assessing statistical significance. 
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Fig 8 displays the Shapiro-Wilk Normality Test results for monthly mean distributions from 

2041-2060, 2061-2080, and 2081-2100. The 'Shapiro-Wilk p-value' column indicates whether 

the data deviates from a normal distribution; p-values below 0.05 suggest rejecting the null 

hypothesis of normality. Any rejected distributions are marked with red text under the 

‘Normality Assumption’ column. 

Because of the non-normality of several monthly mean distributions, the Mann-Whitney 

U test was employed for assessing statistical significance. The Mann-Whitney U test is a 

non-parametric statistical test, meaning it only requires that the samples are independent and that 

the data points are either ordinal or continuous. Figure 9 shows the results from the 

Mann-Whitney tests.  

 

 

Fig 9 shows the results of applying the Mann-Whitney U-tests. Any values below the chosen 

power (0.05) are considered significant. Each column is coded as ‘MH’ (monthly historical) 

followed by the future period being compared, and then either ‘U’ or ‘P’ depending on which 

statistic is in the column.  
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 Using the Mann-Whitney U test, it was found that even in the closest future period, nine 

of the 12 months experienced significant increases. As temperatures rise into the future, all 

months of the year experience significant increases in 2061-2080, and in 2081-2100, 11 out of 

the 12 months experience significant increases.  

 

7e. Scope of Study 

 The findings of this study were based on the results or outputs from one specific grid cell 

of the CanLEADv1 climate model representing an extreme version of climate change. Further, 

this study considered only one point, the midpoint of the southern Lake Winnipeg basin for 

estimating past evaporation. Given Lake Winnipeg’s estimated surface area of 24 514 km2, 

climate impacts will differ between northern and southern basins. Since the resolution of 

CanLEADv1’s grid is around 0.5 degrees in both longitude and latitude, this translates to roughly 

1800 km2 at a latitude of 50.75°N. Therefore, examining a single cell represents a fraction of the 

lake surface. For this reason, this study’s findings do not accurately represent the impact of 

climate change across the entire lake. While analyzing all cells on the lake surface could resolve 

this issue, it would require establishing some formula for partial-cell evaporation and accessing 

future and historical data for multiple cells. Additionally, wind speed bias in CanLEADv1 limits 

its direct use because the results are tied to the method chosen for bias adjustment, which may 

vary with alternate approaches. Furthermore, it is important to recognize that forecast accuracy 

generally decreases the farther it extends into the future. This is especially relevant when 

interpreting projections for 2081–2100, which are likely to deviate more from actual future 

conditions compared to those for 2041–2060. Finally, although the structure of DNN models was 

adjusted appropriately for the number of features, the study could have explored other network 

configurations (different numbers of layers and nodes) along with more formal methods for 

hyperparameter tuning.   

 

8. Conclusions 

Using M0 on future climatic data from CanLEADv1, mean monthly evaporation was 

found to increase in the future when compared against historical averages. Monthly mean 

evaporation rates increased between 12% and 82% by the end of the century, and annual 

cumulative evaporative loss increased by 29% by the end of the century. The non-parametric 
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Mann-Whitney test confirmed the significance of these increases in 9 out of 12 months for 

2041-2060, and in all months for 2061-2080. Significant increases were also noted in 11 out of 

12 months in 2081-2100. DNN-based evaporation prediction models were found to be as 

accurate as the Penman equation, during model training and testing, with the full 7-variable 

model achieving an R2 of 0.9970. Reduced DNN models, with fewer input variables (features), 

remained effective in predicting evaporation, with the R2 degrading from 0.9963 with six 

variables to 0.7949 with just two variables (Tmax & Tmin). This means that a reduced model with 

just two inputs could still explain nearly 80% of the total variance in the dependent variable, 

evaporation. Furthermore, M3 was found to be very economical, requiring only three input 

variables (the other two input variables are estimated from these three and empirical equations) 

and it produced an impressive R2 of 0.9449.   

 

9. Discussion 

The findings of this study, though specific to the grid resolution and simulation scenario 

within CanLEADv1’s outputs, underscore the potential for drastic increases in evaporation from 

Lake Winnipeg due to climate change. A projected 30% rise in annual evaporative loss requires 

careful consideration in hydropower dam operations, as it could impact water availability and 

energy production. Complementary research on the Lower Nelson River System, using a 

different methodology, revealed that evaporative loss would intensify during drier months, while 

wetter months could see increased precipitation [5]. This interplay between evaporation and 

precipitation is crucial as higher precipitation could mitigate some of the evaporative losses, 

making a balanced assessment necessary to determine the net climate change impact. Beyond 

hydropower, Lake Winnipeg supports fisheries, recreation, and ecosystems, making its 

vulnerability to climate change an issue that extends across multiple economic and 

environmental sectors. Understanding the broader consequences of these changes opens the door 

for more advanced studies in the future that could refine predictions and guide long-term 

adaptation strategies. 
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12. Annex I. Penman Calculations + Modifications for Subzero Temperatures 

The following contains all the steps required in the simplified Penman method for 

calculating daily evaporation over an open-water surface using weather station data [14]. 

Corrections for subzero temperatures allowed for sublimation to be accounted for as well. These 

corrections were made for the calculation of mean saturation vapour pressure (Es), vapour 

pressure deficit of average daily temperature (D), latent heat of vaporization (𝜆), and the slope of 

the vapour pressure curve (𝛥). The correction for Es is an adjusted form of Tenten’s equation for 
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saturation vapour pressures below 0 °C [8]. This correction is present in both the calculation of 

average Es and for D, which is calculated using Es. 𝜆 for water is greater at subzero temperatures 

than above zero temperatures, because it is the sum of the latent heat of fusion and the latent heat 

of vaporization to account for sublimation [10]. The exact value was derived in part using A 

Short Course in Cloud Physics [10], and further recommendations in Physical Hydrology [3].  𝛥 

is derived from the Clausius-Clapeyron equation but altered and approximated for subzero 

temperatures as discussed in A Short Course in Cloud Physics [10]. These approximations 

allowed for the calculation of total reservoir loss due to evaporation even at below-zero 

temperatures.  

 

Step & Variable Equation for Above Zero 
Temperatures  

Alternate Equation for 
Subzero Temperature 

1) Rns, net incoming short 
wave radiation 

(1 - 𝛼) ᐧ Rs,  
where 𝛼 is the reflection 
coefficient/albedo (0.08 for open 
water) & Rs is measured or 
estimated incoming solar radiation 
in MJ/m2/d 

N/A 

2) Es average, mean 
saturation vapor pressure 
in mmHg 

Es MAX = 0.611ᐧ exp ((17.27 ᐧ 
Tmax)/(Tmax + 273.3) 
 
Es min = 0.611ᐧ exp ((17.27 ᐧ 
Tmin)/(Tmin + 273.3) 
 
Es avg = (Es min + Es max) / 2 

Es MAX = 0.611ᐧ exp ((21.87 ᐧ 
Tmax)/(Tmax + 265.5) 
 
Es min = 0.611ᐧ exp ((21.87 ᐧ 
Tmin)/(Tmin + 265.5) 
 
Es avg = (Es min + Es max) / 2 

3) Ea average, effective 
vapour pressure 

Es avg ᐧ RH / 100 N/A 

4) Davg, mean vapor 
pressure deficit 

Ds avg = Es avg - Ea avg N/A 

5) D, mean vapor pressure 
deficit of average 
temperature (T) (not to be 
confused with step 5) 

a) Es  = 0.611ᐧ exp ((17.27 ᐧ 
T)/(T + 273.3) 

 
b) Es ᐧ RH / 100 

 
c) Ds avg = Es avg - Ea avg 

a)  Es = 0.611ᐧ exp 
((21.87 ᐧ T) / (T + 
265.5) 

 
b) Same  

 
c) Same 

19 



 

6) 𝜆, latent heat of 
vaporization 

𝜆 = 2.501 - (2.361 x 103 )  ᐧ T 𝜆 = 2.8351 

7) P, pressure in kPa P = 101.3 ᐧ (1 - 0.0065 ᐧ Z / 293)5.26, 
where Z is altitude from sea level, 
222 for this calculation 

N/A 

8) 𝛾, psychometric 
constant 

𝛾 = 0.0016286 ᐧ P / 𝜆 N/A 

9) RSO, clear sky radiation RSO = (0.75 + 2 x 10-5 ᐧ Z) ᐧ RA, 
where RA is extraterrestrial 
radiation (MJ/m2/d) 

N/A 

10) ἐ, net emissivity 
between the atmosphere 
and the ground 

ἐ = (0.34 - 0.14  𝐸
𝑎

N/A 

11) 𝑓, adjustment factor for 
cloud cover 

𝑓 = (1.35 x Rs / RSO - 0.35), where 
RS is measured solar radiation in 
(MJ/m2/d) 

N/A 

12) RnL, net outgoing long 
wave radiation 

RnL = 𝑓ᐧ ἐ ᐧ𝜎 (T + 273.2)4, where T is 
conventionally calculated as the 
average of Tmax and Tmin (not the 
same thing as just T from before) 

N/A 

13) 𝛥, slope of saturation 
vapor pressure curve 

𝛥 = 4908 ᐧ Es / (T + 237.3)2 𝛥 = 4908 ᐧ Es / (T + 265.5)2 

14) Rn, net radiation at 
surface (MJ/m2/d) 

Rn = Rns - RnL N/A 

15) 𝑓u, wind function 𝑓u = aU + bU ᐧ u, where aU is 0 for the 
Linacre Wind Function [14], bU = 
0.536, and u is wind speed 
measured over a 2m height 

N/A 

16) E_PEN, potential 
evaporation calculated 
using the 1948 Penman 
equation (mm/d) [5] 

 

All variables have been calculated 
in previous steps 

N/A 

 
Fig 10 lays out the steps required for Valiantazas’s method of approximating the Penman 
Equation [14], with added accommodations for subzero temperatures taken from Physical 
Hydrology [3] and A Short Course in Cloud Physics [10], laid out sequentially. 
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