
“Entry to the Stockholm Junior Water Prize 2022” 
 
 
 
 
 
 

Conservation of Irrigation Water Through a Novel  
AI Drought Assessment (AIDA) Model in Field Grown 

Tomato (Solanum lycopersicum) Using a 
Custom-Built “Spectra-Rover” 

 
 
 
 
 
 
 

John Benedict Estrada and Pauline Victoria Estrada 
Clovis North High School, Fresno, California  

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

I. Abstract  

 

Development of an early detection tool to assess drought stress in plants is crucial in reducing 

irrigation water used to grow agricultural crops. The AIDA model was developed using field data and 

variables that are physiologic and direct indicators of drought stress. A custom-built Spectra-Rover was 

constructed with infrared (IR) and RGB cameras to capture radiometric IR and RGB plant canopy 

images. Radiometric IR temperature, red, green, and blue light reflectance values, and soil moisture 

readings were used to train the AIDA model. Eighty percent (80%) of the data was used in the training 

dataset and the remaining 20% was used in the validation dataset. The AIDA model validation output 

was very close to the actual CWSI values with a low mean absolute error. A prediction output program 

was coded and appended to the AIDA model to output an AIDA score. This accurately approximated the 

manually calculated CWSI values. If this novel AIDA model with an AIDA score is used on all tomato 

farms in California, approximately 26 billion gallons of irrigation water can be saved each season. 

 

II. Table of Contents       

1.0 Introduction …………………………………………………………………………….     3-6 

2.0 Materials and Methods …………………………………………………………………     6-9 

3.0 Results …………………………………………………………………………………. 10-16  

4.0 Discussion ……………………………………………………………………………... 16-17 

5.0 Conclusion and Future Direction ..…………………………………………………….. 17-18 

6.0 References ………………………………………………………………..…...……….. 18-20  

7.0 Bibliography ……………………………………………………………………………. 20 

 

III. Key Words 

 Early detection of drought stress in plants; machine learning; artificial intelligence model; light 

reflectance values; radiometric infrared canopy temperature  

 

IV. Abbreviations and Acronyms 

AI – Artificial Intelligence; AIDA model – AI Drought Assessment model; IR – infrared; RGB – 

Red, Green and Blue; POP – Prediction Output Program; CWSI – Crop Water Stress Index 



2 
 

V. Acknowledgements 

We would like to thank our mentor, Dr. Dave Goorahoo, at Fresno State University. He gave us 

very valuable advice while we were working on our project. He answered a lot of our questions 

regarding plant physiology, soil science, and agriculture in general. He had a wealth of knowledge and 

experience that he was willing to share with us. Mrs. Kaye Barrie our school (Clovis North High 

School) science fair coordinator, also provided a lot of guidance on how we can further improve our 

project. She painstakingly read our research paper and gave us valuable suggestions and ideas on how 

we can present it effectively. 

 

VI. Biography 

John Estrada is a junior at Clovis North High School in Fresno, California. His elementary and 

middle school research topics range from analyzing the effects of the visible light spectrum on crops to 

using a remote sensing unmanned aerial vehicle to collect multispectral data for the calculation of 

vegetation indices. His high school research involves the use of AI in the development of drought 

assessment tool to accurately predict the earliest sign of drought stress in plants. John’s project was 

recognized as one of the top awardees at the Regeneron ISEF 2021 competition, garnering first place in 

the Plant Science category, as well as the prestigious Gordon E. Moore Award for Positive Outcomes for 

Future Generations. The AIDA model also won first place in the Plant Science category at the 2021 

California Science and Engineering Fair.  This year, John and Pauline are presenting the poster of this 

project at the American Society for Horticultural Science Annual Conference. Aside from his interest in 

science research, John loves to do ballet. He has performed lead roles in the Lively Arts production of 

“The Nutcracker”. He also competes at the Youth America Grand Prix and was awarded as one of the 

top 6 senior male dancers in a recent competition in February 2022. 

Pauline Estrada is a freshman at Clovis North High School in Fresno, California. Her research in 

both elementary and middle school were focused on using custom camera systems interfaced to a 

remotely operated vehicle or rover that she constructed to detect drought stress in plants. Pauline’s sixth 

and seventh grade projects were selected as one of the top 30 finalists at the 2019 and 2020 Broadcom 

MASTERS competitions. She ultimately won the second place Technology award at the Broadcom 

MASTERS 2020 competition. Pauline and John are currently preparing for Regeneron ISEF, which is 

scheduled for May this year. Pauline is also an accomplished ballet dancer. She has won multiple awards 

in the Youth America Grand Prix ballet competition ranging from third to first place in both the classical 



3 
 

and contemporary categories. Aside from doing science fair, she has also performed various lead roles in 

the Lively Arts production of “The Nutcracker”. 

Since 2019, John and Pauline have been mentoring young students who are interested in science 

fair. They are very proud of the remarkable achievements the students they mentored have achieved. 

These students have won multiple recognitions at various fairs. Some awards include BROADCOM 

Masters top 300, 4th place at state, 1st place in their categories, and the sweepstakes award at regional 

competitions. John and Pauline want to raise student involvement in science fair to foster interest in 

STEM fields. 

 

1.0 Introduction 

California is the leading state in the production of fruits, nuts, and vegetables. Fifty percent of 

our nation’s almonds, grapes and fruits come from Fresno County California [1]. Drought impacts 40% 

of the world’s population and is the most serious threat to crops in nearly every part of the world [2], 

especially in California. Water in California is becoming scarcer especially with an almost permanent 

state of drought induced by the ongoing climate crisis. Drought has been, and will continue to be, a big 

problem in California. Because of this problem, the amount of irrigation water used to grow crops in 

California is gaining more attention. Irrigated agriculture accounts for 40% to 80% of total water 

supplies in California [3]. More emphasis should therefore be placed on efficient irrigation management 

through the accurate detection of the earliest signs of drought stress in plants.  This will help farmers 

avoid unnecessary or over irrigation, as well as conserve water without sacrificing their yield.  

Water plays a vital role in plant growth. Drought stress can be considered as one of the most 

important factors affecting plant health and decreasing plant yield. Drought induces stress in plants 

which negatively impacts crop yield and adversely affects global food sufficiency. Early detection of 

drought stress in plants even before it manifests physically can be of great importance in ensuring 

successful crop production. Drought stress can lead to early leaf aging that is characterized by color 

deterioration and nutrient loss [4]. Late detection of drought stress in plants can then lead to irreversible 

damage and yield loss.  

There are commercially available methods of monitoring plant water status which include the 

pressure bomb and the leaf diffusion porometer [5]. However, these methods of measuring plant water 

content are invasive and detect plant drought stress late in the process.   Plant drought stress can also be 

measured or predicted using qualitative assessments such as visual detection. The main problem with 
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visual assessment is that it is subjective and dependent on the skill of the technician doing the evaluation 

or scoring. Also, when signs of water stress are already visible, the stress is already considered excessive 

and irreversible which leads to unavoidable yield reduction. Development of an early detection tool to 

assess drought stress in plants is crucial in reducing irrigation water used to grow agricultural crops.

The advancements in visible light spectrum and thermal imaging cameras have led to the 

development of remotely accessible, and non-destructive methods of determining the water status in 

plants. Thermal imaging cameras can capture thermal energy radiated off the surfaces of almost all heat 

emitting sources in our planet including living things, rocks, buildings, etc. Thermal energy is radiated 

as infrared (IR) waves, composed of different wavelengths: short, middle, and long IR waves. Hotter 

surfaces will emit more of the shorter IR waves and cooler surfaces will emit more of the longer waves. 

Different materials will also have different rates of absorption and emission of thermal radiation. 

Thermal imaging cameras can be used for “infrared thermography”. IR thermography is a technique 

used to capture an infrared image and translate it into radiometric temperature measurements/values [6]. 

This technique can be used to measure the canopy temperature of almost all species of plants including 

solanaceous crops.  

The plant’s canopy temperature has been used as an indicator of water availability since 1962 

[7]. Development of different devices and instruments that use infrared technology in measuring canopy 

temperature has led to the development of a quantitative method of water stress evaluation. The concept 

of crop water stress index (CWSI) to assess drought stress in plants was introduced by Ehrler in 1973 

[8]. A plant that is suffering from drought stress will have higher canopy temperature compared to a 

normal and healthy plant. The values of CWSI range from 0-1, with values approaching one indicating 

that the plant is suffering from severe drought stress [5]. CWSI calculation uses variables that are mostly 

indirect indicators of drought stress in the plant, namely vapor pressure deficit, canopy, and air 

temperature. 

The emergence of “artificial intelligence”, particularly machine learning algorithms in 

agriculture have led to progress in predicting drought stress in plants. The most common deep learning 

method used is the “transfer learning” method that requires only a small dataset and less advanced 

hardware [9] but requires a predetermined and tested model. However, the use of a deep learning model 

approach, such as “train from scratch”, can offer a better way of estimating and predicting drought stress 

in plants since it can change all the weights and parameters of the model during the training phase of the 

process. 



5 
 

Artificial intelligence (AI) has been used in various studies involving the prediction of vegetation 

health which used data from satellite images to calculate vegetation indices [10], estimation of canopy 

temperatures in the field using IR thermometers [11] and drought stress identification and classification 

in corn using image analysis [9].  However, the use of close proximity visible light spectrum RGB (red, 

green, and blue) light reflectance values combined with radiometric infrared plant canopy temperature 

readings and soil moisture to develop a robust and accurate machine learning model to detect early 

drought stress has not been previously explored. 

In 2020, the use of machine learning was explored to develop an AI-based drought tool to predict 

drought stress in bell pepper plants utilizing the variables used in the CWSI calculation [12]. The tool 

worked marginally well, with a mean absolute error of 0.02. 

In 2021, further improvements on the AI-based drought tool were done resulting in the 

development of the AI Drought Assessment (AIDA) model which utilized variables that were all 

physiologic and direct plant stress indicators, rather than the atmospheric variables that were used in 

CWSI calculation [13]. The variables used to develop the AIDA model were red, green, and blue or 

RGB light reflectance values, canopy temperatures, and soil moisture readings. These variables are 

considered direct indicators of drought stress in plants. RGB light reflectance values are intimately 

involved in photosynthesis and stimulation of stomatal opening. IR leaf canopy temperature on the other 

hand correlates with a plant’s transpiration rate and soil moisture determines the amount of water 

available to the plant. 

The AIDA model developed using data from a controlled bench laboratory environment was 

robust in predicting drought stress in bell pepper plants. Its output was a remarkably close prediction of 

the actual CWSI values with an extremely low mean absolute error (MAE) rate of 0.00048 achieved in 

only 28 “epochs” (repetitions of the machine learning algorithm). 

In 2022, the AIDA model that was previously developed using data from an indoor bench 

laboratory experiment was trained, validated, and optimized using data from an actual field experiment. 

Although, the AIDA model developed in 2021 was very robust, it was deemed important to test and 

validate it under actual field conditions. A custom-built remotely operated vehicle (ROV) equipped with 

a visible light spectrum RGB and infrared camera, and telemetry-capable microcomputer system, 

referred to herein as the “Spectra-Rover” was used to measure and transmit plant canopy temperatures 

and visible light reflectance values. 

Research Question: Can a trained Artificial Intelligent Drought Assessment (AIDA) model 
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developed using actual field data quickly and more accurately detect early drought stress in tomato 

plants compared to CWSI? 

Hypothesis: The trained Artificial Intelligent Drought Assessment (AIDA) model developed 

using field data can quickly and more accurately detect early drought stress in tomato plants compared 

to CWSI. 

Research Objectives: This study was conducted to develop the novel AIDA model using field 

data with variables that are physiologic and direct indicators of drought stress. It also aims to generate a 

prediction output program (POP) that outputs a new AI Drought Assessment (AIDA) Score which can 

be used to determine whether the tomato plants are experiencing the earliest signs of drought stress. This 

score will help farmers decide when to irrigate as well as help them manage their irrigation water 

judiciously. 

 

2.0 Materials and Methods: 

Phase 1. Constructing and programming a custom-built remotely operated vehicle (ROV) equipped 

with RGB + IR Camera also referred to as the “Spectra-Rover” to measure plant canopy 

temperatures and light reflectance values. 

A custom-built rover was utilized in this project.  The rover was constructed from a 6-wheel 

drive chassis mounted with a GPS-equipped Arduino-based Pixhawk controller. A 6-inch 

microcomputer was mounted on the autonomous ground-based remotely operated vehicle (ROV), or 

rover. The microcomputer was then connected to a Samsung Tab A 8 tablet via Google Remote Desktop 

to allow capturing and transmission of images in “real time”.  

An infrared camera utilizing a Lepton 3.5 sensor with a 57-degree field of view and a resolution 

of 160 x 120 radiometric pixels was constructed and interfaced to the microcomputer. The custom-built 

IR camera and an 8-megapixel red, green, and blue (RGB) camera were then mounted together on the 

rover. Both cameras were then used to obtain RGB and radiometric thermal images concurrently.  

Using ImageJ2 packaged in Fiji, the individual canopy pixel temperatures and visible light 

reflectance values in each pixel were extracted from the saved RGB and radiometric thermal images. 

The custom-built remotely operated vehicle (ROV) fitted with a custom-made RGB + IR Camera 

was referred to as the “Spectra-Rover”. This new ROV set up proved to be versatile since close 

proximity RGB and thermal images from the custom-made RGB + IR camera can be captured, viewed, 

saved, and transmitted to the “cloud” from the on-board computer in real-time. 
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Phase 2. Growing and assessing tomato plants in the field that will be used to develop the AIDA 

model. 

a. Planting the test crop. A field experiment on Tomato plants (Solanum lycopersicum), applied 

with different irrigation levels was used in this study. The field was located at California State 

University (CSU), Fresno.  The texture of the soil was a sandy loam. There were 6 treatments or 

irrigation levels. Five individual water valves were installed to regulate and control the amount of 

irrigation water that were applied in each treatment. Plants were irrigated every day at the same time. 

 
Transplanting tomato at CSU, Fresno, Agricultural Field. (Photo credit: John Estrada) 

 
Individual valve for individual irrigation level/treatment. (Photo credit: John Estrada) 
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The irrigation time and Evapotranspiration (ET) level for each treatment is summarized below. 

Treatment Evapotranspiration Rate - ET (%) Irrigation time (minutes) 

A - Control 100 90 

B 90 81 

C 80 72 

D 70 63 

E 60 54 

F 50 45 

The same fertilization rate and pest management were applied in all the treatments. 

 

b. Data collection. A HydroSense II Handheld Soil Moisture Sensor with 6” probe was used to measure 

soil moisture. The ambient temperature and relative humidity were measured using the UbiBot soil 

moisture meter (photo below). The lepton 3.5 sensor and the RGB camera system installed on the 

Spectra-Rover were used to measure the leaf canopy temperature and the RGB light reflectance values. 

Individual pixel temperatures in centiKelvin were extracted from the saved radiometric thermal images 

using ImageJ2. The RGB raster values were also extracted from the plain RGB images obtained through 

the RGB camera using ImageJ2 as well.  

 
The data that were obtained using the Spectra-Rover (RGB light reflectance values and canopy 

temperatures) and the HydroSense II handheld soil moisture meter (Soil moisture readings) were then 

used to train and validate the AIDA model to accurately predict drought stress.  
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Phase 3. Training, validating and optimizing the AIDA model that predicts the CWSI using the actual 

field data. 

The AIDA model was programmed on a Raspberry Pi 400A (photo below) using Python 3.7, 

running TensorFlow 1.14 (Google, Inc.), with the Keras API. A “Sequential” model with 3 neural net 

layers was constructed using Adam as the optimizer and mean squared error as the loss function. Metrics 

that were used in the model were mean squared error and mean absolute error. An early stopping 

function was incorporated to prevent overfitting. 

 
Infrared images for each plant were then analyzed using the ImageJ2 Fiji software program. The 

plant canopy IR foliage image was used to obtain the most accurate average temperature which was then 

used to calculate the crop water stress index (CWSI). 

The RGB images with 19,200 (160x120) pixels/plant were also analyzed using the ImageJ2 Fiji 

software program.  Each image had 19,200 (160x120) pixels. A total of 230,400 raster values for each 

Red, Green & Blue light wavelength were collected. The soil moisture level for each treatment was 

measured the same time the images were obtained. The canopy temperatures, raster values for each Red, 

Green & Blue light wavelength and soil moisture data were used to re-train and adapt the AIDA model. 

 

Phase 4. Coding the New Prediction Output Program (POP) which output an AIDA score. 

The AIDA model was programmed on a Raspberry Pi 400A using Python 3.7, running 

TensorFlow 1.14 (Google, Inc.), with the Keras API. The prediction output program or “POP” running 

the re-trained AIDA model was used on a tomato plant not included in the training and validation 

datasets. 
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3.0 Results 

Extraction of Canopy Temperatures and RGB Light reflectance Values Using the ImageJ2 Fiji 

software program. 

 
Radiometric plant canopy images were captured. Each image had 19,200 (160x120) pixels with 

corresponding temperature values that ranged from 20,308.00 to 40,288.00 centiKelvin. A total of 

230,400 canopy temperature values were collected from the sample plants and used to develop the 

AIDA model (Image 1). 

 
The red, green, and blue (RGB) images were captured. Each image had 19,200 (160x120) pixels. 

A total of 230,400 raster values for each Red, Green & Blue light wavelength were collected from the 

sample plants and used to develop the AIDA model (Image 2). 

 

Training and Optimizing AIDA Model for Tomato. 

The program for the novel AIDA model was coded on a Raspberry Pi 400 A using Python 3.7 

for machine learning analysis of the data. TensorFlow (version 1.14.0, Google) with a Keras application 

programming interface (API) was utilized. 
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The CSV file containing the data array with the leaf canopy temperature values (IR), red (Red), 

green (Green) and blue (Blue) raster values, and soil moisture (Moisture) was loaded into the program. 

The crop water stress index values (CWSI) calculated from each plant canopy image was imported as 

well from the CSV file.  

 
The neural network was designed as a sequential algorithm, as it was started from scratch. Eighty 

percent (80%) of the total collected data (230,400 unique rows with 6 columns each) was used as a 

training and validation sample. All data, including the isolated test data, were normalized. 

 

Three dense neural net layers (Diagram 1) were used to derive the 

appropriate weights and biases from the five variables collected 

utilizing the “Adam” optimizer with mean squared error being used 

as the loss function and mean squared error and mean absolute error 

as metrics, to formulate an AI model that tracked closely with the 

true value of CWSI.  
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An early stopping function was incorporated into the model to prevent overfitting.  

 
 

Once the AI model was rendered, it was tested on the remaining 20% of the dataset to measure 

the degree of correlation between the actual and predicted CWSI values.  
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The following table shows the successful importation of the CSV file containing the data array 

with the leaf canopy temperature values (IR), red (Red), green (Green) and blue (Blue) raster values, and 

soil moisture (Moisture). The crop water stress index values calculated from each image (CWSI) was 

imported as well from the CSV file.  

 
The following descriptive statistical parameters were obtained: 

 
The AI model was successfully built with the following output describing its characteristics: 
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The AI model was deployed, and 27 epochs were needed out of the planned 100 epochs before 

the early stopping function was activated to prevent overfitting: 

 
Validation Phase Results 

 
The validation phase of the experiment applied the re-trained AIDA model on the test data 

samples which very closely predicted the true values of CWSI. Figure 1 showed this close 

approximation by the AIDA model output to the true values of CWSI from the test dataset with a very 

low mean absolute error rate of 0.0058 achieved in only 27 “Epochs” – repetitions of the machine 

learning algorithm.  
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Pair Plots Analysis  

The pair plots showed a positive trend between the CWSI and the red raster values, the CWSI 

and the green raster values, as well as the CWSI and the blue raster values up to CWSI value of 0.3  

(Figure 2). The red, blue and green raster values were increasing as CWSI value increased from 0 to 0.3. 

However, as soon as the plants experience late stages of drought stress, at CWSI values greater than 0.3, 

the red, green and blue raster values started to decline.  

 A positive relationship between green and red raster values, green and blue raster values, as well 

as red and blue raster values were observed. There was, however, a trend towards an inverse relationship 

between the CWSI and soil moisture values. With higher soil moisture values, lower CWSI values were 

observed (lower plant drought stress). 
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Field testing of the AIDA model and the New AI Drought Assessment (AIDA) Score on field grown 

tomato plants.  

A Prediction Output Program (POP) 

was coded which output an AIDA Score from a 

plant not included in the training and validation 

datasets. The POP appended to the AIDA 

model was able to independently output an 

AIDA Score based on infrared radiometric 

data, red, green, and blue light reflectance, and 

soil moisture values. This closely approximated 

the manually calculated CWSI value of 0 for 

the independent test plant (Image 3). 

 

4.0 Discussion 

The AIDA model output was able to make very close predictions to the true values of CWSI, 

with a very low mean absolute error rate. 

The results in the pair plots showed an increasing trend on the reflected green lights as the stress 

level in tomato plants reached a CWSI value of 0.3. However, a decreasing trend on the reflected RGB 

light was observed beyond 0.3. The likely explanation for this is the presence of the “stay-green” 

phenomenon in tomato plants.  

The stay green phenomenon allows the leaf to still retain its green color even when its 

photosynthetic activity declines due to the failure in the chlorophyll degradation pathway [14, 15, 16]. 

This effect in tomato plants can only last up to a 0.3 CWSI value. Beyond this value, the stay green 

effect starts to decline leading to chlorophyll degradation and decreasing reflected green light.  

The increasing trend in reflected red and blue light detected by the RGB camera as the tomato 

plants reached a CWSI value of 0.3 indicates decreasing amounts of red and blue light absorbed by the 

tomato plant as it becomes increasingly drought stressed. The decreased amount of red light absorbed is 

due to the declining photosynthetic activity induced by drought stress which leads to stomatal closing to 

prevent excessive water loss. Blue light triggered stomatal opening by guard cells is also reduced as 

drought stress worsens given its synergistic mechanism with red light induced photosynthetic activity 

which is also declining [17]. 
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The positive relationship observed between red, green, and blue light reflectance can be 

explained by the physiologic adaptation of tomato plants to drought stress through photosynthesis and 

the regulation of stomatal opening and transpiration. Blue and red light are both involved in facilitating 

different signaling pathways which stimulate stomatal opening [18, 19]. Red light stimulates the opening 

of the stomata through its role in photosynthesis [20] while blue light triggers blue-light receptors - 

phototropins, that absorb blue light and facilitates stomatal opening [17, 21].  

 

5.0 Conclusions  

The outcome of this study supports our hypothesis that the newly trained AIDA model and 

resulting new AIDA Score, formulated and validated using field data, proved to be a quick and accurate 

way of determining early drought stress in tomato plants.  

The AIDA model can detect early signs of drought stress in plants by exploiting the “stay green” 

phenomenon, a plant’s early response and adaptation to drought stress, and by measuring radiated IR 

heat which is a measure of a plant’s transpiration rate.  

The “stay green” phenomenon manifested during early drought stress was captured by the RGB 

camera and was revealed in the extracted raster values.  This early sign of drought stress is difficult to 

see if farmers were to rely on just visual evaluation or the calculated CWSI values.  

The “stay green” phenomenon in tomato plants is observed during the early onset of drought 

stress until a CWSI value of 0.3. Beyond this value, the chlorophyll starts to degrade.  

The green light reflectance increased abruptly from an AIDA Score value of 0.15-0.21 which 

indicated that at 0.15, the tomato plants were already experiencing early signs of drought stress. 

Irrigation for tomato plants should therefore be applied when the AIDA score reaches a critical value of 

0.15 or higher. 

Quick determination of the AIDA score can be accomplished using the Spectra-Rover equipped 

with its custom-built IR + RGB camera system which allows for consistent close proximity plant canopy 

measurements and real-time data transmission. This system allows for rapid detection of drought stress 

either on site, or even remotely if necessary. Other benefits, include being able to monitor their crop 

water status at multiple locations without the need for traveling to each site. 

The AIDA model and AIDA Score will have a big impact with the way irrigation water is being 

managed in the field.  By knowing the water status of the plants in real time, the farmers will have an 

idea when it is necessary to irrigate their field. They will avoid unnecessary and over irrigation. 
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 Approximately 26 billion gallons of irrigation water every season can be conserved if all tomato 

farms in California use the AIDA model. This novel technique of determining drought stress in tomato 

plants can help farmers conserve water without sacrificing their yield.  

The future direction of this study is to streamline point of service autonomous AI based drought 

stress evaluation and interface directly with existing irrigation systems for more precise real-time water 

application adjustments. 
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