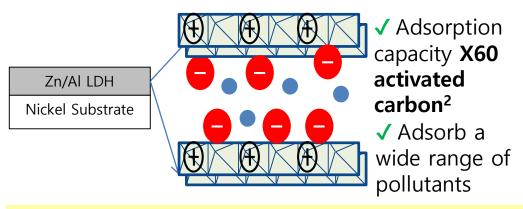

Novel Hybrid Regeneration Process for Adsorbent used in Wastewater Treatment

Wang Haiyi National Junior College & A*STAR, Singapore

Problems

In developing countries, 70% of industrial wastewater is discharged into waterbodies¹


Release of toxic industrial pollutants taints waterbodies

Adsorption: superior performance in removing chemical contaminants.

- Little focus on reusing used adsorbents
- X Not economically viable and environmentallyfriendly

Proposed Solutions

Layered Double Hydroxide (LDH)

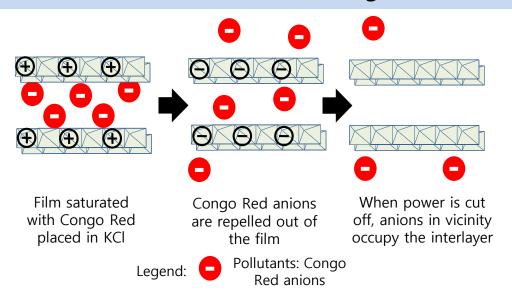
Aim: Develop Regeneration Process of pollutant loaded LDH

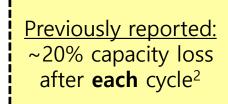
Calcination

1. Breakdown pollutant via calcination

Key Findings

Novel Electrochemical (EC) Regeneration




Figure 2. Schematic representation of proposed mechanism

- **Novel idea** of using electrical potential: drive pollutants out of the layered structure
- **185% boost** in recovery rate
- **6 times cheaper** than conventional methods

Metal Hydroxide Metal oxide Metal oxide Metal Hydroxide Water molecules Congo Red (CR)

2. Regaining adsorption capacity via "Memory Effect"

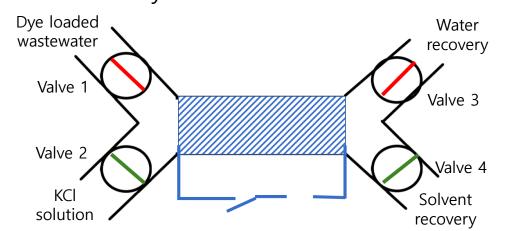
Avtivation via calcination: Adsorption capacity of LDH X60 when activated at 400 °C

This project: <5% loss in total (till 6th cycle)

Regeneration via Calcination

- **✓** Effective Recovery
 - ✓ Cost Effective
 - ✓ Simple process

Novel	EC	Regeneration
/ On	cita	Daganaration


- ✓ On-site Regeneration
- √ Recovery of Adsorbate
 - ✓ Cost Effective
- ✓ No Sludge Generated

Conclusions

Novel EC Regeneration	Calcination		
185% boost in recovery rate	Reduce capacity loss per cycle by 80%		
√ Low energy consumption	✓ Optimized Process✓ High recovery		
✓ Cost Effective ✓ Simple Process ✓ Environmentally Friendly			

Future Works

Hybrid water treatment

1. Azizullah, A., Khattak, M. N. K., Richter, P., & Häder, D. P. (2011). Water pollution in Pakistan and its impact on public health—a review. Environment international, 37(2), 479-497. 2. Zaghouane-Boudiaf, H., Boutahala, M., & Arab, L. (2012). Removal of methyl orange from aqueous solution by uncalcined and calcinedMgNiAl layered double hydroxides (LDHs). Chemical Engineering Journal, 187,142-149.