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I.  ABSTRACT 

This interdisciplinary study employs a novel computer vision algorithm with a cellulosic biocomposite for 

the rapid classification and elimination of water contaminants. In-lab water diagnoses are currently 

expensive, time-consuming and inaccessible to many rural communities. However, the ubiquity of 

smartphone technology provides a powerful platform for water analytics. A biocomposite was engineered to 

filter various contaminants whilst retaining water samples for analysis with a smartphone camera system. A 

random forest (RF) computer vision approach was designed to categorise image features to generate a 

probability map. K-means clustering grouped similar pixels and a secondary RF validated different cell 

regions for species identification. After training, the algorithm identified heavy-metals and individually 

trained bacterial species within seconds with 90.16% accuracy. Biocomposite filtration removed 2,671 parts 

per billion (ppb) of Pb2+, 2,234 ppb of Ni2+, 96% of bacteria and 100% of solid particulates; initial exposure 

to biocomposite casein resulted in 100% coliform bacterial inactivation within the filtrate in 10 minutes. This 

study develops a novel, rapid and accessible system for field-analysis, mapping global water quality and 

purifying water in developed and developing countries. 
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1.  INTRODUCTION 

Democratising global access to clean water is the objective of the United Nations’ Sustainable Development 

Goal (SDG) 6 [1], with trickle-down effects to Millennium Development Goal 7 [2] and other SDGs to 

improve education, pioneer sustainability and eradicate hunger, poverty and disease. However, according to 

the World Health Organisation, over 2 billion people drink contaminated water, thus resulting in 3.4 million 

deaths annually from the spread of waterborne illnesses such as: Escherichia coli (E. coli), Salmonella and 

Vibrio cholerae (cholera) [3]. Furthermore, the United Nations predicts chronic water shortage will affect 1 

in 4 people by 2050 [1]. Moreover, the presence of toxic heavy-metals such as mercury, lead and nickel have 

detrimental effects on aquatic and mammalian life; human exposure to heavy-metals can result in the 

impairment of vital organs and organ systems, oftentimes proving to be fatal [4].  

 

Conventional methods to remove toxic heavy-metals from water, including reverse osmosis, distillation and 

activated carbon, are expensive and resource intensive. Crockett et al. synthesised a sulphur-limonene 

polysulphide material capable of binding to heavy-metals and exhibiting a chromogenic response when 

bound to Hg2+ [5]. However, this material was unable to inactivate bacteria and filter solid particulate 

contaminants. Nithiyanandam [6] extended the previous approach by developing a cellulosic bioplastic 

capable of sequestering Pb2+ and facilitating a photocatalytic advanced oxidation process. Similarly, the 

bioplastic was also unable to filter solid particulates and relied on sunlight to completely inactivate bacteria. 

Pervious concrete composites, such as those by Jeswani et al. [7], have shown to effectively remove 

particulate contaminants, however such filters cannot remove toxic heavy-metals and cement is considered a 

non-renewable resource.  

 

Studying water composition prior to purification can yield valuable data that could be used to identify and 

address sources of water contamination. However, literature describing methods to accurately, rapidly and 

simultaneously identify multiple bacterial species and heavy-metal types without strict adherence to 

laboratory assays is scarce. Complementary metal-oxide-semiconductor (CMOS) sensors are popular 

components and are almost universal within smartphone cameras due to their fast speeds, low cost and power 

efficiency [8]. Therefore, CMOS sensors open the possibility for rapid, camera-based identification of water 

contaminants. However, smartphone imaging of bacterial cells is burdened by magnification limitations and 

significant background noise, with heavy-metals traditionally being impossible to identify by camera-

imaging due to their presence on the ionic level. Nevertheless, clip-on magnification units for smartphones 

exist, thus demonstrating potential for small, cheap and durable smartphone-compatible magnification 

systems.  
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Computer vision can be used to extract image features for analysis and distinguish between valuable image 

regions and background noise [9]. However, previous approaches have struggled with delineation due to 

difficulty with identifying boundaries between adjacent cells [9, 10]. Kim et al.’s proposition to use support 

machine vector classifiers to extract cells from the background was limited by overestimation or 

underestimation of cell regions, particularly clustered cells [10]. Random forest (RF) ensemble approaches 

rely on using weak learners (trees) to ultimately yield a strong learner (forest) [11]. RFs are a popular choice 

due to their quick training and availability of library implementations, such as scikit-learn and R. 

Furthermore, RF classifiers can address overfitting issues by drawing upon a random feature set injected at 

each node to decide the split for decision trees [11]. Nevertheless, analysing water samples through image 

features is challenging, with no reported literature concerning the use of computer vision to identify 

individual, water-present bacterial species and heavy-metals in real-time.  

 

This study aims to design, construct and evaluate a novel system for the rapid removal of solid particulates, 

bacteria and heavy-metals from water, whilst accurately identifying heavy-metals and individual bacterial 

species. Building upon Nithiyanandam's approach [6], the potential for cellulose, casein and D-limonene to 

form a novel, porous biocomposite for effective water filtration was evaluated. It was hypothesised that a 

porous cellulosic matrix would filter contaminants, whilst cellulose-stabilised D-limonene would sequester 

heavy-metals. For water analysis, the potential for a cheap, smartphone-compatible van Leeuwenhoek lens 

system for simultaneous water purification and analysis using RF was studied. Furthermore, the use of a 

script to make any analysed water data and sample images publicly accessible was also explored. This project 

is envisioned to not only serve the vital function of sustainably increasing accessibility to potable water, but 

to also provide a resource for researchers and citizens to easily and rapidly analyse local water quality, to 

ultimately map global water quality, thus providing insight for future approaches to improve water 

sustainability.  

 

2.  MATERIALS AND METHODS  

2.1 Materials and Chemicals  

Microcrystalline cellulose was obtained from Blackburn Distributions. Cellulose fibres, urea, (R)-(+)-

Limonene (referred to as ‘limonene’ henceforth), 0.2M aqueous sodium hydroxide (NaOH) solution and 

casein hydrolysate were purchased from Sigma-Aldrich. Glycerol and sodium chloride (NaCl) were obtained 

from Fisher Scientific.  Glass beads were used to construct the magnification unit and a Samsung RV520 

laptop running Windows 7 acted as a server for data processing. The algorithms were written in Python. 



7 

 

For sequestration studies, 2% aqueous lead acetate (Pb(C2H3O2)2 and nickel (II) chloride (NiCl2) solution 

were purchased from Fisher Scientific and Eramet respectively. 1,5-diphenylthiocarbazone (dithizone) and 

ethylenediaminetetraacetic acid (EDTA) was obtained from Sigma-Aldrich for analysis of Pb2+ and Ni2+ 

concentration respectively. Lysogeny broth was made for bacterial assays [12]. Studies were conducted with 

E. coli (K-12 strain), and Vibrio fischeri (V. fischeri) and Sarcina aurantiaca (S. aurantiaca) served as model 

organisms for cholera and salmonella respectively. For training and live-testing of the computer vision 

algorithm, the aforementioned bacteria species were used. All bacterial strains used are classified under Risk 

Group 1 and are considered suitable for school use. Distilled water was used in all experiments.  

 

2.2 Manufacturing a Sample-retaining Biocomposite for Water Filtration 

2.2.1 Developing a Porous Biocomposite 

Naturally-occurring cellulose fibres were used to form the underlying biocomposite matrix. An aqueous 

NaOH-urea solution (8% NaOH and 8% urea) was prepared for the swelling and partial dissolution of the 

cellulose fibres [13, 14], combined with 10g of microcrystalline cellulose. Furthermore, 12g of casein 

hydrolysate and 35ml of limonene was added to the aqueous cellulose-NaOH-urea solution. The resulting 

solution was formed into a three-dimensional structure prior to being heated at 120oC for 30 minutes and 

subsequently cooled. All biocomposite samples used for analyses had a surface area of 265cm2. 

 

2.2.2 Synthesizing and Integrating a Non-Porous Bioplastic for Sample Retention  

A transparent bioplastic was synthesised to be integrated into the biocomposite (Figure 1) to retain water 

samples for analysis. The synthesis methodology was adapted from Nithiyanandam’s study [5], using a 1% 

aqueous cellulose-fibre solution combined with 10ml of limonene instead of a cellulose-TiO2 paste. Casein 

hydrolysate was not used for bioplastic synthesis to avoid bacterial inactivation within the analysis sample. 

 

 

 

 

 

 

 

 

 

Figure 1. shows a diagrammatic representation of a porous biocomposite with a separated section for non-porous 

bioplastic integration to retain water samples for analysis. 
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2.3 Deployment of Glass Beads for Smartphone-Based Magnification 

Commercially purchased glass beads were obtained and a mechanism to secure the glass bead to a  

smartphone camera was 3D printed as described by Erikson et al. [15].  

 

 

 

 

 

 

 

 

 

 

 

2.4 Computer Vision Scheme 

2.4.1 Pixelwise Classification 

The pixelwise classification stage 

aims to categorise the pixels 

comprising the sample images into 

four classes: bright-region, dark-

region, halo artifacts and noise. 568 

labelled, light-microscope images of 

E. coli (K-12), S. aurantiaca and V. 

fischeri were used as training data. 

Principal component analysis (PCA) 

was performed as a dimensionality reduction measure (Figure 5). T number of trees, t, comprising the forest 

are independently trained, t ∈ {1, ..., T}, using a random subsample of training data [16]. For the construction 

of this classifier, T=500 and the number of features at each internal node was set as the quartic root of the 

feature vector length. Testing points, v¸ are pushed from the tree root nodes until they reach the 

corresponding leaf nodes (terminal) (Figure 3) to evaluate unseen data. The combined prediction of each tree, 

ascertained by calculating the mean prediction for each class, c, forms the RF:  

 

P(c|v) = 
1

𝑇
∑ pt(c|v)𝑇

𝑡=1            (1) 

Figure 2. shows images taken of E. coli (K-12) samples with a glass bead clip-on for smartphone cameras. a) 

shows an image at 150x magnification, b) shows an image at 400x magnification and c) shows an image at 600x 

magnification. 

Figure 3. A simplified representation of a random forest consisting of 

three decision trees forming the mean class prediction. 

a) b) c) 
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The dark-regions and bright-regions of each cell are given as a probability estimate based on the output. 

Artifacts are removed by restoring the sample image through dividing the ill-conditioned optics matrix, A, by 

the vectorised image, O, to yield the restored sample image, Rimage: 

 

Rimage = 
𝐴

𝑂
             (2) 

 

2.4.2 Identifying Cell Candidates 

The probability estimate yielded by the pixelwise classification scheme 

indicates dark and bright cell regions. The next stage combines this data 

with identified cell outline characteristics to predict the bacterial species 

present. The centre peak for each cell was found using the k-means 

method [17] to cluster probability values (Figure 4). The output cluster 

which resulted in the maximisation of the probability map produced 

during pixelwise classification was used to identify cells. Probability 

maps for dark-region, bright-region and halo artifacts were noted as D, B 

and H respectively and the probability that a cell would be identified is: 

 

𝑃 = {
1, 𝐷 + 𝐵 + 𝐻 > 𝑡,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (3) 

 

where t is a threshold value set to 0.8. Each cell candidate is represented as a binary value, with 1 

representing a cell and 0 representing background.  

 

2.4.3 Algorithm Validation 

Finally, a validation RF is built to differentiate between individual adjacent cells and cell clusters. Cell 

cluster patterns are advantageous for further differentiating between species of the same genus (e.g. between 

V. fischeri and V. cholerae). Cell boundaries were treated as an individual region to determine whether the 

region was shared between multiple cells or belonged to an individual cell. Popular for object detection, 

histograms of oriented gradients (HoG) were extracted from potential cell regions [18]. The HoG acts by 

dividing the entire sample image into smaller regions and then combining the computed edge-oriented 

histograms within a larger image region. This process improves image contrast and is therefore useful for 

identifying individual cells and silhouettes of individual cells within clusters. The validation process 

decreases false-positive outputs and prevents double-detection of already identified bacterial cells.  

Figure 4. Division of object into 

sub-blocks for feature extraction 

to identify cell candidates. 
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Due to the presence of Pb2+ and Ni2+ resulting in different chromogenic responses, a simple HoG function is 

required to differentiate between the various chromogenic responses and background noise, therefore 

enabling the identification of Pb2+ and Ni2+.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Extent of Water Purification 

2.5.1 Filtration of Solid Particulates 

Water samples were passed through filter paper. Any solid present on the filter paper was washed with 

distilled water and gently heated. The mass after drying was determined to ascertain the extent to which the 

biocomposite had filtered solid particulates.  

 

2.5.2 Removal and Inactivation of Bacteria 

E. coli, V. fischeri and S. aurantiaca were transferred to separate, autoclaved lysogeny broth samples, and 

incubated at 25oC for 48 hours. 3M Petrifilms [19] were used to record the total coliform counts (TCCs) of 

each sample pre-filtration, and post-filtration at time intervals of 0s, 15s, 30s, 45s, 60s, 75s, 90s, 105s and 

120s. Aseptic technique was used throughout.  

 

2.5.3 Heavy-Metal Sequestration Studies 

2.00x10-5 mol dm-3 lead acetate and 7.00x10-6 mol dm-3 nickel (II) chloride stock solutions were prepared 

and separately passed through the biocomposite filter. Spectrophotometric analysis was performed on pre-

filtration and post-filtration water samples to determine Pb2+ [20] and Ni2+ [21] concentrations. 

Figure 5. An outline of the algorithmic scheme by which sample images for supervised learning are 

processed before undergoing further processing by the random forest ensemble(s). 

Input 

Training 

Images 

Luminosity Projection 

using NumPy 

Euclidean Distance 

Transformation 

Segmentation 
Principal 

Component Analysis 

Processing by Random 

Forest Ensemble 
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3.  RESULTS 

3. 1 Chromogenic Response to Pb2+ and Ni2+ Exposure 

 

 

 

 

 

 

 

 

 

 

 

3.2 Water Contamination Classification 

3.2.1 Identification of Individual Bacterial Species 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

d) c) 

Figure 7. a) shows a sample in-situ 

image of E. coli (K-12) taken with 

the smartphone-based 

magnification system and b) shows 

an enlarged region of the same 

image for bacterial identification 

analysis; c) shows the post-PCA 

confidence of the computer-vision 

schema with blue and red dots 

representing cell candidates and 

background respectively; d) shows 

the computer-vision schema 

interpretation of the image with 

cell candidates being highlighted as 

blue/purple.  

Escherichia coli Escherichia coli 

 

Escherichia coli 

 

Escherichia coli 
 

Figure 6. Sample image of the sample-retaining bioplastic after exposure to: a) water samples without Pb2+ and Ni2+, 

b) water samples containing Pb2+ and Ni2+ and c) an image of the 2017 bioplastic sample developed by 

Nithiyanandam [6]. 

a) b) c) 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sarcina aurantiaca 

Sarcina aurantiaca 

 

Sarcina aurantiaca 

 

Sarcina aurantiaca 
 

Figure 9. a) shows a sample in-situ 

image of V. fischeri taken with the 

smartphone-based magnification 

system and b) shows an enlarged 

region of the same image for 

bacterial identification analysis; c) 

shows the post-PCA confidence of 

the computer-vision schema with 

blue and red dots representing cell 

candidates and background 

respectively; d) shows the 

computer-vision schema 

interpretation of the image with 

cell candidates being highlighted as 

blue/purple.  

 

a) b) 

d) c) 

Figure 8. a) shows a sample in-situ 

image of S. aurantiaca taken with 

the smartphone-based 

magnification system and b) shows 

an enlarged region of the same 

image for bacterial identification 

analysis; c) shows the post-PCA 

confidence of the computer-vision 

schema with blue and red dots 

representing cell candidates and 

background respectively; d) shows 

the computer-vision schema 

interpretation of the image with 

cell candidates being highlighted as 

blue/purple.  

 

Vibrio fischeri Vibrio fischeri 

 

Vibrio fischeri Vibrio fischeri 



13 

3.3 Water Purification 

3.3.1 Removal of Solid Contaminants 

After filtration through the biocomposite, there was no measurable dry mass of solid particulates present. 

 

3.3.2 Removal and Inactivation of Bacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Sequestration of Pb2+ and Ni2+ 

 

Ions 

Decrease in Concentration of Inorganic Ions/ppb 

Trial  

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 

Trial 

6 

Trial 

7 

Trial 

8 

Trial 

9 

Trial 

10 

Trial 

11 

Trial 

12 

Trial 

13 

Trial 

14 

Trial 

15 

Pb2+ 2542 2693 2689 2661 2800 2678 2834 2587 2863 2593 2618 2545 2847 2621 2666 

Ni2+ 2231 2189 2269 2052 2369 2286 2254 2224 2250 2189 2276 2459 2326 2185 2132 

 

Figure 10. shows the changes in the mean TCC of water samples pre-filtration, and at set time intervals 

post-filtration. 
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Ions 
Decrease in Concentration of Inorganic Ions/ppb 

Mean (�̅�) Standard Deviation (s) 

Pb2+ 2671 113 

Ni2+ 2234 91 

 

 

 

4. DISCUSSION 

4.1 Identification of Water Contaminants 

The filtration of PbCl2 (aq) through the biocomposite structure resulted in the rapid formation of yellow 

structures on/in the sample-retaining bioplastic whilst NiCl2 (aq) resulted in the formation of green structures 

(Figure 6b & 6c).  Interestingly, both colour changes were not reversed even after washing the bioplastic 

unit, suggesting that the structures may be immobilised complexes formed between the limonene and heavy-

metal ions. The resistance of the structures to washing allows the smartphone-based computer vision 

algorithm to identify the exhibited chromogenic responses and ascertain the types of heavy-metals present.  

 

The RF module was initially provided with 10-dimensional data extracted from the images of the bacterial 

and heavy-metal water samples to allow the children trees to identify deeper underlying trends between 

image features.  However, PCA (Figures 7c, 8c & 9c) was performed to reduce the resource intensiveness of 

the algorithm on smartphone systems. The absence of literature concerning smartphone-based water analysis 

in real-time suggests that this study may be the first to explore the potential of such technologies. Table 2 

shows the accuracy at which the smartphone-based computer vision algorithm can identify water-based 

contaminants from post-PCA image samples.  

 

Sample Type Accuracy/% 

Escherichia coli (K-12 strain) 83.2 

Sarcina aurantiaca 89.6 

Vibrio fischeri 85.6 

Pb2+structures 97.3 

Ni2+ structures 95.1 

 

 

Table 1. a) shows the calculated decrease in Pb2+/Ni2+ concentrations for each trial and b) shows the mean 

and standard deviation of the decrease in Pb2+/Ni2+ concentrations. 

 

Table 2. shows the accuracy at which the computer vision algorithm identified different types of markers 

present as, or formed as a result of, contaminants within water samples. 
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4.2 Purification of Water 

The mean pre-filtration TCC was calculated to be 287 cfu/ml (100%). Immediately after filtration, the mean 

TCC decreased to 13 cfu/ml (5%), and further decreased to 0 cfu/ml (0%) by 10 minutes. The TCC was 

observed to remain at 0 cfu/ml after 10 minutes post-filtration. Biocomposite filtration is thought to 

immediately filter coliform bacteria which do not have the correct orientation, or are too large, to pass 

through the filter. Furthermore, the natively antimicrobial casein hydrolysate within the biocomposite is 

believed to stimulate the complete inactivation of remaining coliform bacteria within the filtrate, thus 

resulting in the 100% inactivation of coliform bacteria within the water within 10 minutes.  

 

The peak absorbance wavelength of Pb-dithizone complexes was found to be 502nm and the absorbance of 

the Pb-dithizone complexes is reported to follow Beer's Law (Equation 4) in the concentration range of 

0.001-10 mg l-1 [19], where the molar extinction coefficient constant for Pb-dithizone chelate solution, ε, was 

graphically calculated to be 1.90×104 l mol-1 cm-1   and the path length, b, is 1cm. After filtration, the Pb2+ 

concentration showed a mean decrease of 2,671 parts per billion (ppb), which is approximately 178 times the 

actionable lead level of 15 ppb issued by the United States’ Environmental Protection Agency [4].  

 

𝐴 =  εbc              (4) 

 

Ni-EDTA complexes displayed maximum absorbance at 380nm and the absorbance of Ni-EDTA complexes 

is also reported to follow Beer's Law in the concentration range of 0.030-2.730 mg l-1 [20], where ε for Ni-

EDTA complexes was graphically calculated to be 5.86×104 l mol-1 cm-1 and b is 1cm. A mean decrease of 

2,234 ppb of Ni2+ was recorded after filtration of the Ni2+ samples through the biocomposite. 

The null hypothesis was that there would be no significant difference in the mean decrease of Pb2+ 

concentration compared to Ni2+ concentration. The t-test (Equation 5), where �̅� is the mean decrease in ion 

concentration, s is the standard deviation for the decrease in ion concentration and n is the number of trials 

(Table 1), was applied to test the null hypothesis: 

 

𝑡 =
(�̅�𝑃𝑏−�̅�𝑁𝑖)

(𝑠𝑃𝑏)
2

𝑛
 − 

(𝑠𝑁𝑖)
2

𝑛

             (5) 
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The calculated value for the t-test was 25.26, which is greater than the critical value of 3.674 at the 0.1% 

significance level at 28 degrees of freedom. Therefore, 𝑝 ≤ 0.001 and we can reject the null hypothesis. The 

significant difference between the decrease in Pb2+ concentration compared to Ni2+ concentration after 

filtration may potentially be explained by lead (II) being more reactive than nickel (II), thus resulting in lead 

(II) binding to biocomposite limonene more readily than nickel (II). The maximum Pb2+ and Ni2+ removed by 

biocomposite filtration is believed to be limited by the relatively short time during which the water is in 

contact with the biocomposite. Moreover, the surface area of the biocomposite in contact with the water 

sample is also believed to limit the extent of Pb2+ and Ni2+ sequestration, due to a greater surface area 

correlating with increased exposed limonene binding sites. 

 

4.3 Examples of Applications 

The system designed in this study demonstrates the potential to be a rapid, portable and sustainable unit for 

the simultaneous analysis and purification of water. The system is envisioned to assist citizens and scientists, 

in both developed and developing regions, due to the biocomposite-enabled water filtration being a passive 

process which does not require input energy and the smartphone-based water analysis only requiring a 

functioning smartphone. Moreover, the system is inexpensive and automated, thus increasing its accessibility 

and operability by removing the necessity for excessive human input. In addition to providing potable water, 

the water analysis and purification unit may also serve field-medics by aiding disease diagnosis through the 

identification of waterborne illnesses, such as heavy metals and pathogenic bacterial contaminants. 

 

The smartphone-based and biocomposite-enabled water analysis and filtration also enables citizen scientists 

to easily analyse samples from local water sources; ultimately a global map of water quality may be built by 

collating the data generated by widespread analysis of local water sources. Such a publicly-available, citizen-

built global map could provide the means to develop sustainability measures by analysing changes in water 

quality over time on a local, national and international scale. For example, if a hazardous contaminant is 

independently found to be present in a local water source on numerous occasions, and that data is publicly 

available, data concerning that particular contaminant can be cross-referenced with local activity in the 

region to quickly identify and address potential sources of contamination.  

 

The author understands that whilst widespread, smartphones are not universal and certain communities may 

not be able to perform the smartphone-based analysis of water samples. However, the system designed in this 

study still allows for sustainable water purification without a smartphone, thus ensuring that potable water is 

made accessible to as many individuals as possible. Whilst the aforementioned system has several point-of-
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use applications, the biocomposite engineered in the study could remove water contaminants from water to 

be distributed to swathes of the population, without resulting in harmful byproducts, such as chlorinated 

hydrocarbons, which often result from the standard practice of water chlorination. Similarly, the 

biocomposite may serve as an inexpensive and sustainable alternative to traditional household filters, which 

oftentimes do not remove heavy-metals.  

 

4.4 Safety and Sustainability 

Cellulose, the primary constituent of the biocomposite, is often cited as the world’s most abundant organic 

resource. Moreover, cellulose is an insoluble dietary fibre that is not digested or absorbed by humans and 

several forms of cellulose have been categorised by the U.S Food and Drug Administration (FDA) as 

generally recognised as safe (GRAS). An antimicrobial feature of the biocomposite is derived from the innate 

properties of fragmented casein. Casein is found in mammalian milk, is commercially sold as a health 

supplement and many casein-containing products are FDA GRAS certified. Similarly, glycerol is widely 

accepted as non-toxic and is FDA GRAS certified.    

 

Unlike Nithiyanandam's bioplastic [6], the biocomposite developed in this study does not require titanium 

dioxide, thus reducing the safety and environmental concerns commonly associated with nanoparticles. Urea 

is used for the swelling of the cellulosic fibres, however it is later removed in the drying stage. Nevertheless, 

further toxicity studies must be conducted to thoroughly evaluate the safety of the biocomposite. 

 

4.6 Cost Analysis 

Raw Material Cost per kg (£) 

Mass required for 

purification of 1 litre of 

water (kg) 

Initial* cost of 

purification of 1 litre 

of water (£) 

Microcrystalline cellulose 3.55 0.0100 0.035 

Cellulose fibre 5.67 0.0140 0.079 

Casein hydrolysate 15.43 0.0120 0.185 

Urea 47.20 0.0013 0.061 

(R)-(+)-Limonene 45.50 0.0029 0.131 

Glycerol 3.80 0.0672 0.255 

0.2M NaOH solution 26.38 0.0021 0.055 
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NaCl 2.10 0.0330 0.069 

 

 

*The initial cost of materials required to synthesise 142.5g of biocomposite (i.e. the mass of biocomposite 

required to purify 1 litre of water) is £0.87 (GBP). However, with usage, the cost of biocomposite for 

purification per litre of water is expected to decrease from £0.87, due to the ability of the bioplastic to 

withstand several usage cycles.  

 

5. CONCLUSIONS 

1. The novel cellulosic biocomposite developed in this study effectively filtered solid water 

contaminants and coliform bacteria. This conclusion is supported by the 100% removal of solid 

particulates and a 96% decrease in mean TCC immediately after filtration. 

2. Further bacterial inactivation studies supported the hypothesis that bacterial inactivation would 

continue to occur within the filtrate; the mean TCC decreased to 0 cfu/ml by 10 minutes post-

filtration. Whilst the mechanism of post-filtration bacterial inactivation is unknown conclusively, the 

author hypothesises that the mechanism relies on natively antimicrobial casein hydrolysate.  

3. The biocomposite demonstrated Pb2+ and Ni2+ sequestration capabilities. Pb2+ and Ni2+ sequestration 

is supported by qualitative observations of Pb2+ and Ni2+ deposit formation. 

4. Furthermore, quantitative analysis employing UV-Vis spectrophotometry demonstrated a post-

filtration decreased in Pb2+ and Ni2+ concentration of 2,671 ppb and 2,234 ppb respectively. The value 

obtained for the t-test demonstrated there was a significant difference between the decrease in Pb2+ 

concentration compared to Ni2+ concentration at the 0.1% significance level.  

5. A cheap glass-bead magnification system for smartphones was able to produce a real-time image of 

water samples that could be assessed to identify potential contaminants. 

6. A novel random forest schema, in combination with a HoG function, was trained using 568 labelled 

images in a supervised learning approach. The schema was trained to identify 3 different species of 

bacteria: E. coli (K-12), S. aurantiaca and V. fischeri.  

7. Principal component analysis was able to compress 10-imensional data presented to the classifier into 

fewer dimensions to decrease resource demands during image processing.  

8. Image bright regions, dark regions, halo artifacts and noise were used as principal features for image 

analysis. A probability threshold of 0.8 was set after assigning weighted values for the 

Table 3. shows the raw cost of materials for bioplastic & biocomposite synthesis. 
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aforementioned image features; the algorithm either classified bacteria as E. coli (K-12), S. 

aurantiaca, V. fischeri or ‘unrecognised’.  

9. The accuracy at which the algorithm identified bacterial species and heavy-metal deposits from 

images varied by species and heavy-metal deposit type: E. coli (K-12), S. aurantiaca, V. fischeri, Pb2+ 

deposits and Ni2+ deposits were identified with accuracies of 83.2%, 89.6%, 85.6%, 97.3% and 95.1% 

respectively. 

10. The cost of the raw materials for synthesising 142.5g of biocomposite is £0.87. However, it is 

expected that the purification cost per litre of water will decrease over time with usage. 
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